F-命运的抉择_2024牛客寒假算法基础集训营6

题目链接

F-命运的抉择_2024牛客寒假算法基础集训营6 (nowcoder.com)

题意

给一个长度为 \(n(2\le n\le 10^5)\) 的数组 \(a(1\le a_i\le 10^6)\),对每个 \(a_i\) 将其添加进数组 \(b\) 或数组 \(c\)​。要求 \(b\)\(c\) 均非空,两个数组中各任取一个元素 \(b_i,c_j\),均满足 \(\gcd(b_i,c_j)=1\)

思路

先用筛法预处理出 \(10^6\) 范围内每个数的素因子。

然后采用并查集,如果两个数包含同一个素因子,那么它们就必须在同一个集合内。最终如果集合数小于 \(2\),则无解。对于可行解,可以将一个集合放入数组 \(b\),其余集合放入数组 \(c\)

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
#include<bits/stdc++.h>
// #define int long long
#define endl '\n'
#define debug(x) cout << #x << " = " << x << endl
#define debug2(x,y) cout << #x << " = " << x << " " << #y << " = "<< y << endl
using namespace std;

typedef long long LL;
typedef unsigned long long uLL;
typedef pair<int, int> pii;
const double eps = 1e-9;
const int mod = 998244353;
const int maxn = 1e5 + 10;
const int maxa = 1e6;

int a[maxn], f[maxn];
bool vis[maxn];
vector<int> fac[1'000'001];

int find(int x) {
return f[x] == x ? x : f[x] = find(f[x]);
}

void solve() {
int n;
cin >> n;
for(int i = 1; i <= n; i++) {
cin >> a[i];
f[i] = i;
vis[i] = false;
}
map<int, int> mp;
for(int i = 1; i <= n; i++) {
for(auto x : fac[a[i]]) {
if(mp.find(x) != mp.end()) {
f[find(i)] = find(mp[x]);
}
else mp[x] = i;
}
}

int fir = 0, sec = 0;
for(int i = 1; i <= n; i++) {
int f = find(i);
if(!vis[f]) {
vis[f] = true;
if(fir == 0) fir = f;
else sec = f;
}
}
if(!sec) cout << "-1 -1\n";
else {
int lb = 0, lc = 0;
for(int i = 1; i <= n; i++) {
if(find(i) == fir) lb++;
else lc++;
}
cout << lb << " " << lc << endl;
for(int i = 1; i <= n; i++) {
if(find(i) == fir) cout << a[i] << " ";
}
cout << endl;
for(int i = 1; i <= n; i++) {
if(find(i) != fir) cout << a[i] << " ";
}
cout << endl;
}
}

// #define sunset
signed main() {
cin.tie(nullptr)->sync_with_stdio(false);

#ifdef sunset
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
#endif


for(int i = 2; i <= maxa; i++) if(fac[i].empty())
for(int j = i; j <= maxa; j += i) fac[j].push_back(i);

int T = 1;
cin >> T;
while(T--) {
solve();
}
return 0;
}